This chapter describes advanced procedures, such as setting up keystores and a truststore for the {project_name} server, creating an administrator account, as well as an overview of available {project_name} client registration methods, and guidance on configuring clustering.
You can deploy using these templates. They require HTTPS, JGroups keystores and the {project_name} server truststore to already exist, and therefore can be used to instantiate the {project_name} server pod using your custom HTTPS, JGroups keystores and {project_name} server truststore.
==== Preparing the deployment
.Procedure
. Log in to the OpenShift CLI with a user that holds the _cluster:admin_ role.
. Add the `view` role to the link:{ocpdocs_default_service_accounts_link}[`default`] service account. This enables the service account to view all the resources in the sso-app-demo namespace, which is necessary for managing the cluster.
In this procedure, the *_openssl_* toolkit is used to generate a CA certificate to sign the HTTPS keystore, and create a truststore for the {project_name} server. The *_keytool_*, a package *included with the Java Development Kit*, is then used to generate self-signed certificates for these keystores.
The {project_name} application templates using xref:../introduction/introduction.adoc#reencrypt-templates[re-encryption TLS termination] do not *require* or *expect* the HTTPS and JGroups keystores and {project_name} server truststore to be prepared beforehand.
The re-encryption templates use OpenShift's internal link:{ocpdocs_serving_x509_secrets_link}[service serving x509 certificate secrets] to automatically create the HTTPS and JGroups keystores.
The {project_name} server truststore is also created automatically, containing the */var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt* CA certificate file, which is used to create these cluster certificates. Moreover, the truststore for the {project_name} server is pre-populated with the all known, trusted CA certificate files found in the Java system path.
.Prerequisites
The {project_name} application templates using passthrough TLS termination require the following to be deployed:
* An xref:create-https-keystore[HTTPS keystore] used for encryption of https traffic,
* The xref:create-jgroups-keystore[JGroups keystore] used for encryption of JGroups communications between nodes in the cluster, and
* xref:create-server-truststore[{project_name} server truststore] used for securing the {project_name} requests
For production environments Red Hat recommends that you use your own SSL certificate purchased from a verified Certificate Authority (CA) for SSL-encrypted connections (HTTPS).
See the https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform/6.1/html-single/security_guide/index#Generate_a_SSL_Encryption_Key_and_Certificate[JBoss Enterprise Application Platform Security Guide] for more information on how to create a keystore with self-signed or purchased SSL certificates.
. Generate a CA certificate. Pick and remember the password. Provide identical password, when xref:signing-csr-with-ca-certificate[signing the certificate sign request with the CA certificate] below:
. Sign the certificate sign request with the CA certificate. Provide the same password that was used to xref:generate-ca-certificate[generate the CA certificate]:
To make the preceding command work on one line, the command includes the process substitution (`<() syntax`). Be sure that your current shell environment supports such syntax. Otherwise, you can encounter a `syntax error near unexpected token `('` message.
. Import the CA certificate into the HTTPS keystore. Provide `mykeystorepass` as the keystore password. Reply `yes` to `Trust this certificate? [no]:` question:
. Create the secrets for the HTTPS and JGroups keystores, and {project_name} server truststore, generated in the xref:Configuring-Keystores[previous section].
After you create xref:Configuring-Keystores[keystores] and xref:Configuring-Secrets[secrets], deploy a passthrough TLS termination template by using the `oc` command.
In the following `oc` command, the values of *_SSO_ADMIN_USERNAME_*, *_SSO_ADMIN_PASSWORD_*, *_HTTPS_PASSWORD_*, *_JGROUPS_ENCRYPT_PASSWORD_*, and *_SSO_TRUSTSTORE_PASSWORD_* variables match the default values in the *_{project_templates_version}-https_* {project_name} application template.
For production environments, Red Hat recommends that you consult the on-site policy for your organization for guidance on generating a strong user name and password for the administrator user account of the {project_name} server, and passwords for the HTTPS and JGroups keystores, and the truststore of the {project_name} server.
Also, when you create the template, make the passwords match the passwords provided when you created the keystores. If you used a different username or password, modify the values of the parameters in your template to match your environment.
You can determine the alias names associated with the certificate by using the following *_keytool_* commands. The *_keytool_* is a package included with the Java Development Kit.
An example {project_name} 7 application. For more information about using this template, see \https://github.com/jboss-openshift/application-templates.
A new {project_name} service has been created in your project. The admin username/password for accessing the master realm via the {project_name} console is admin/redhat. Please be sure to create the following secrets: "sso-app-secret" containing the keystore.jks file used for serving secure content; "sso-app-secret" containing the jgroups.jceks file used for securing JGroups communications; "sso-app-secret" containing the truststore.jks file used for securing {project_name} requests.
The hostname SPI introduced a flexible way to configure the hostname for the {project_name} server.
The default hostname provider one is `default`. This provider provides enhanced functionality over the original `request` provider which is now deprecated. Without additional settings, it uses the request headers to determine the hostname similarly to the original `request` provider.
For configuration options of the `default` provider, refer to the {installguide_link}#_hostname[{installguide_name}].
The `frontendUrl` option can be configured via `SSO_FRONTEND_URL` environment variable.
[NOTE]
For backward compatibility, `SSO_FRONTEND_URL` settings is ignored if `SSO_HOSTNAME` is also set.
Another option of hostname provider is `fixed`, which allows configuring a fixed hostname. The latter makes sure that only valid hostnames can be used and allows internal applications to invoke the {project_name} server through an alternative URL.
Run the following commands to set the `fixed` hostname SPI provider for the {project_name} server:
. Deploy the {project_openshift_product_name} image with *_SSO_HOSTNAME_* environment variable set to the desired hostname of the {project_name} server.
{project_name} can be configured to connect to an external (to OpenShift cluster) database. In order to achieve this, you need to modify the `sso-{database name}` Endpoints object to point to the proper address. The procedure is described in the link:{ocpdocs_ingress_service_external_ip_link}[OpenShift manual].
The easiest way to get started is to deploy {project_name} from a template and then modify the Endpoints object. You might also need to update some of the datasource configuration variables in the DeploymentConfig. Once you're done, just roll a new deployment out.
. Download the JDBC driver binaries into this directory.
. Create a new `Dockerfile` file in this directory with the following contents. For other databases, replace `mariadb-java-client-2.5.4.jar` with the filename of the respective driver:
. Create a new `sso-extensions.cli` file in this directory with the following contents. Update the values of the variables in italics according to the deployment needs:
+
[source,bash,subs="attributes+,macros+,+quotes"]
----
batch
set DB_DRIVER_NAME=_mariadb_
set DB_USERNAME=_username_
set DB_PASSWORD=_password_
set DB_DRIVER=_org.mariadb.jdbc.Driver_
set DB_XA_DRIVER=_org.mariadb.jdbc.MariaDbDataSource_
set DB_JDBC_URL=_jdbc:mariadb://jdbc-host/keycloak_
. In this directory, build your image by typing the following command, replacing the `project/name:tag` with arbitrary name. `docker` can be used instead of `podman`.
. After the build finishes, push your image to the registry used by OpenShift to deploy your image. Refer to the link:{ocpdocs_cluster_local_registry_access_link}[OpenShift guide] for details.
{project_name} does not provide any pre-configured management account out of the box. This administrator account is necessary for logging into the `master` realm's management console and performing server maintenance operations such as creating realms or users or registering applications intended to be secured by {project_name}.
* By providing values for the xref:sso-admin-template-parameters[*_SSO_ADMIN_USERNAME_* and *_SSO_ADMIN_PASSWORD_* parameters], when deploying the {project_name} application template, or
* By xref:sso-admin-remote-shell[a remote shell session to particular {project_name} pod], if the {project_openshift_product_name} image is deployed without an application template.
{project_name} allows an initial administrator account to be created by the link:{project_doc_base_url}/getting_started_guide/index#create-admin_[Welcome Page] web form, but only if the Welcome Page is accessed from localhost; this method of administrator account creation is not applicable for the {project_openshift_product_name} image.
When deploying {project_name} application template, the *_SSO_ADMIN_USERNAME_* and *_SSO_ADMIN_PASSWORD_* parameters denote the username and password of the {project_name} server's administrator account to be created for the `master` realm.
*Both of these parameters are required.* If not specified, they are auto generated and displayed as an OpenShift instructional message when the template is instantiated.
* For an in-memory database mode (*_{project_templates_version}-https_* and *_{project_templates_version}-x509-https_* templates), the account exists throughout the lifecycle of the particular {project_name} pod (stored account data is lost upon pod destruction),
* For an ephemeral database mode *_{project_templates_version}-postgresql_* templates), the account exists throughout the lifecycle of the database pod. Even if the {project_name} pod is destructed, the stored account data is preserved under the assumption that the database pod is still running,
* For persistent database mode (*_{project_templates_version}-postgresql-persistent_*, and *_{project_templates_version}-x509-postgresql-persistent_* templates), the account exists throughout the lifecycle of the persistent medium used to hold the database data. This means that the stored account data is preserved even when both the {project_name} and the database pods are destructed.
It is a common practice to deploy an {project_name} application template to get the corresponding OpenShift deployment config for the application, and then reuse that deployment config multiple times (every time a new {project_name} application needs to be instantiated).
In the case of *ephemeral or persistent database mode*, after creating the RH_SSO server's administrator account, remove the *_SSO_ADMIN_USERNAME_* and *_SSO_ADMIN_PASSWORD_* variables from the deployment config before deploying new {project_name} applications.
Run the following commands to prepare the previously created deployment config of the {project_name} application for reuse after the administrator account has been created:
You use the following commands to create an administrator account for the `master` realm of the {project_name} server, when deploying the {project_openshift_product_name} image directly from the image stream without using a template.
.Prerequisite
* {project_name} application pod has been started.
The 'sso_admin' / 'sso_password' credentials in the example above are for demonstration purposes only. Refer to the password policy applicable within your organization for guidance on how to create a secure user name and password.
When restarting the server it is important to restart just the JBoss EAP process within the running {project_name} container, and not the whole container. This is because restarting the whole container will recreate it from scratch, without the {project_name} server administration account for the `master` realm.
. Log in to the `master` realm's Admin Console of the {project_name} server using the credentials created in the steps above. In the browser, navigate to *\http://sso-<project-name>.<hostname>/auth/admin* for the {project_name} web server, or to *\https://secure-sso-<project-name>.<hostname>/auth/admin* for the encrypted {project_name} web server, and specify the user name and password used to create the administrator user.
=== Customizing the default behavior of the {project_name} image
You can change the default behavior of the {project_name} image such as enabling TechPreview features or enabling debugging. This section describes how to make this change by using the JAVA_OPTS_APPEND variable.
This procedure assumes that the {project_openshift_product_name} image has been previously xref:Example-Deploying-SSO[deployed using one of the following templates:]
You can use the OpenShift web console or the CLI to change the default behavior.
If you use the OpenShift web console, you add the JAVA_OPTS_APPEND variable to the sso deployment config. For example, to enable TechPreview features, you set the variable as follows:
[source,bash,subs=+attributes]
----
JAVA_OPTS_APPEND="-Dkeycloak.profile=preview"
----
If you use the CLI, use the following commands to enable TechPreview features when the {project_name} pod was deployed using a template that is mentioned under Prerequisites.
Once deployed, the *_{project_templates_version}-https_* and *_{project_templates_version}-x509-https_* templates create a single pod that contains both the database and the {project_name} servers. The *_{project_templates_version}-postgresql_*, *_{project_templates_version}-postgresql-persistent_*, and *_{project_templates_version}-x509-postgresql-persistent_* templates create two pods, one for the database server and one for the {project_name} web server.
Clients are {project_name} entities that request user authentication. A client can be an application requesting {project_name} to provide user authentication, or it can be making requests for access tokens to start services on behalf of an authenticated user. See the link:{project_doc_base_url}/server_administration_guide/index#assembly-managing-clients_server_administration_guide[Managing Clients chapter of the {project_name} documentation] for more information.
- *public*: Useful for JavaScript applications that run directly in the browser and require no server configuration.
- *confidential*: Useful for server-side clients, such as EAP web applications, that need to perform a browser login.
- *bearer-only*: Useful for back-end services that allow bearer token requests.
It is required to specify the client type in the *<auth-method>* key of the application *web.xml* file. This file is read by the image at deployment. Set the value of *<auth-method>* element to:
* *KEYCLOAK* for the OpenID Connect client.
* *KEYCLOAK-SAML* for the SAML client.
The following is an example snippet for the application *web.xml* to configure an OIDC client:
A client application can be automatically registered to an {project_name} realm by using credentials passed in variables specific to the *_eap64-sso-s2i_*, *_eap71-sso-s2i_*, and *_datavirt63-secure-s2i_* templates.
Alternatively, you can manually register the client application by configuring and exporting the {project_name} client adapter and including it in the client application configuration.
Automatic {project_name} client registration is determined by {project_name} environment variables specific to the *_eap64-sso-s2i_*, *_eap71-sso-s2i_*, and *_datavirt63-secure-s2i_* templates. The {project_name} credentials supplied in the template are then used to register the client to the {project_name} realm during deployment of the client application.
See xref:Example-EAP-Auto[Example Workflow: Automatically Registering EAP Application in {project_name} with OpenID-Connect Client] for an end-to-end example of the automatic client registration method using an OpenID-Connect client.
Manual {project_name} client registration is determined by the presence of a deployment file in the client application's _../configuration/_ directory. These files are exported from the client adapter in the {project_name} web console. The name of this file is different for OpenID-Connect and SAML clients:
* Modify the deployment file to contain the {project_name} adapter configuration so that it is included in the _standalone-openshift.xml_ file at deployment, or
See xref:Example-EAP-Manual[Example Workflow: Manually Configure an Application to Use {project_name} Authentication, Using SAML Client] for an end-to-end example of the manual {project_name} client registration method using a SAML client.
You can introduce the *_SSO_VAULT_DIR_* environment variable directly in the environment in your deployment configuration. It can also be included in the template by addding the following snippets at the appropriate places in the template:
+
[source,json,subs="attributes+,macros+"]
----
"parameters": [
...
{
"displayName": "RH-SSO Vault Secret directory",
"description": "Path to the RH-SSO Vault directory.",
"name": "SSO_VAULT_DIR",
"value": "",
"required": false
}
...
]
env: [
...
{
"name": "SSO_VAULT_DIR",
"value": "${SSO_VAULT_DIR}"
}
...
]
----
+
[NOTE]
====
The files plaintext vault provider will be configured only when you set
OpenShift does not currently accept OpenShift role mapping from external providers. If {project_name} is used as an authentication gateway for OpenShift, users created in {project_name} must have the roles added using the OpenShift Administrator `oc adm policy` command.